1,639 research outputs found

    Mini-Publics as an innovation in spatial governance

    Get PDF
    Mini-publics—deliberative fora made up of randomly selected, representative groups of citizens—have attracted considerable interest as a means of resolving perceived weaknesses in existing forms of governance. In this paper, we consider the use of a mini-public or citizens’ assembly to constitute an ad hoc governance space based on the Travel to Work Area of Cambridge in the United Kingdom rather than working within the existing local government boundaries within which transport infrastructure is usually governed. Through this case study, we explore the question of embedding mini-publics in the wider processes of policy and decision-making. More specifically this is the question of the extent to which they ought to be permitted to inform and even assume responsibility for local-level transport policy decisions. We argue that, if they are to become more widely used, then it will be necessary to understand the practices associated with such democratic experiments and their potential to transform existing governance networks in contested areas of spatial policy

    Electron localisation in static and time-dependent one-dimensional model systems

    Get PDF
    Electron localization is the tendency of an electron in a many-body system to exclude other electrons from its vicinity. Using a new natural measure of localization based on the exact manyelectron wavefunction, we find that localization can vary considerably between different ground-state systems, and can also be strongly disrupted, as a function of time, when a system is driven by an applied electric field. We use our new measure to assess the well-known electron localization function (ELF), both in its approximate single-particle form (often applied within density-functional theory) and its full many-particle form. The full ELF always gives an excellent description of localization, but the approximate ELF fails in time-dependent situations, even when the exact Kohn-Sham orbitals are employed.Comment: 7 pages, 4 figure

    Energy versus electron transfer in organic solar cells: a comparison of the photophysics of two indenofluorene: fullerene blend films

    Get PDF
    In this paper, we compare the photophysics and photovoltaic device performance of two indenofluorene based polymers: poly[2,8-(6,6,12,12-tetraoctylindenofluorene)-co-4,7-(2,1,3-benzothiodiazole] (IF8BT) and poly[2,8-(6,6,12,12-tetraoctylindenofluorene)-co-5,5-(40,70-di-2-thienyl-20,10,30-benzothiodiazole] (IF8TBTT) blended with [6,6]-phenyl C61 butyric acid methyl ester (PCBM). Photovoltaic devices made with IF8TBTT exhibit greatly superior photocurrent generation and photovoltaic efficiency compared to those made with IF8BT. The poor device efficiency of IF8BT/PCBM devices is shown to result from efficient, ultrafast singlet F€orster energy transfer from IF8BT to PCBM, with the resultant PCBM singlet exciton lacking sufficient energy to drive charge photogeneration. The higher photocurrent generation observed for IF8TBTT/PCBM devices is shown to result from IF8TBTT’s relatively weak, red-shifted photoluminescence characteristics, which switches off the polymer to fullerene singlet energy transfer pathway. As a consequence, IF8TBTT singlet excitons are able to drive charge separation at the polymer/fullerene interface, resulting in efficient photocurrent generation. These results are discussed in terms of the impact of donor/acceptor energy transfer upon photophysics and energetics of charge photogeneration in organic photovoltaic\ud devices. The relevance of these results to the design of polymers for organic photovoltaic applications is also discussed, particularly with regard to explaining why highly luminescent polymers developed for organic light emitting diode applications often give relatively poor performance in organic photovoltaic devices

    Role of long-range exact exchange in polaron charge transition levels: The case of MgO

    Get PDF
    Predicting the degree of localization and calculating the trapping energies of polarons in insulators by density functional theory (DFT) is challenging. Hybrid functionals are often reparametrized to obtain accurate results and the a priori selection of these parameters is still an open question. Here we test the accuracy of several range-separated hybrid functionals, all reparametrized to produce an accurate band gap, by calculating the charge transition levels (CTLs) of experimentally well-studied hole polaron defect centers in MgO. We show that the functional with screened long-range exact exchange is moderately but consistently more accurate than functionals which do not include long-range exact exchange. We provide evidence that the source of the improved accuracy is the eigenvalue associated with the valence band maximum of the bulk material. We discuss the extent to which this accuracy relates to Koopmans' compliance of the defect energy level

    Coral Reef Island Initiation and Development Under Higher Than Present Sea Levels

    Get PDF
    Coral reef islands are considered to be among the most vulnerable environments to future sea-level rise. However, emerging data suggest that different island types, in contrasting locations, have formed under different conditions in relation to past sea level. Uniform assumptions about reef island futures under sea-level rise may thus be inappropriate. Using chronostratigraphic analysis from atoll rim islands (sand- and gravel-based) in the southern Maldives, we show that whilst island building initiated at different times around the atoll (~2,800 cal. yr. B.P. and ~4,200 cal. yr. B.P. at windward and leeward rim sites respectively), higher than present sea levels and associated high-energy wave events were actually critical to island initiation. Findings thus suggest that projected sea-level rise and increases in the magnitude of distal high-energy wave events could reactivate this process regime which, if there is an appropriate sediment supply, may facilitate further vertical reef island-building

    Linkage Disequilibrium Mapping via Cladistic Analysis of Single-Nucleotide Polymorphism Haplotypes

    Get PDF
    We present a novel approach to disease-gene mapping via cladistic analysis of single-nucleotide polymorphism (SNP) haplotypes obtained from large-scale, population-based association studies, applicable to whole-genome screens, candidate-gene studies, or fine-scale mapping. Clades of haplotypes are tested for association with disease, exploiting the expected similarity of chromosomes with recent shared ancestry in the region flanking the disease gene. The method is developed in a logistic-regression framework and can easily incorporate covariates such as environmental risk factors or additional unlinked loci to allow for population structure. To evaluate the power of this approach to detect disease-marker association, we have developed a simulation algorithm to generate high-density SNP data with short-range linkage disequilibrium based on empirical patterns of haplotype diversity. The results of the simulation study highlight substantial gains in power over single-locus tests for a wide range of disease models, despite overcorrection for multiple testing
    • 

    corecore